Early stimulation and late inhibition of extracellular signal-regulated kinase 1/2 phosphorylation by IGF-I: a potential mechanism mediating the switch in IGF-I action on skeletal muscle cell differentiation.

نویسندگان

  • Saleh Adi
  • Bassam Bin-Abbas
  • Nan-Yan Wu
  • Stephen M Rosenthal
چکیده

IGF-I has a unique biphasic effect on skeletal muscle cell differentiation. Initially, IGF-I inhibits differentiation and promotes proliferation of skeletal myoblasts. Subsequently, IGF-I switches to stimulating differentiation of these cells. The mechanisms responsible for this switch in IGF action remain unknown. We have examined the role of extracellular signal-regulated kinase (Erk)1/2 signaling in mediating the early inhibitory and late stimulatory effects of IGF-I on the gene expression of myogenin, a skeletal muscle-specific transcription factor essential for myogenic differentiation. We find that, concurrent with its early inhibitory and late stimulatory effects on myogenin mRNA, IGF-I has a biphasic but opposite effect on phosphorylation of Erk1/2: initially, IGF-I increases and subsequently decreases the phosphorylation of Erk1/2 in comparison to untreated cells. Cotreatment with an inhibitor of Erk1/2 activation prevents the early IGF-I-stimulation of Erk1/2 phosphorylation and partially reverses IGF-I-inhibition of myogenin mRNA. Conversely, preventing the late IGF-I-induced decrease in Erk1/2 phosphorylation blocks IGF-I-stimulation of myogenin mRNA. Our data indicate that the time-dependent, opposing effects of IGF-I on skeletal muscle cell differentiation are mediated, at least in part, by biphasic but opposite effects on activation of the Erk1/2 MAPK signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dexamethasone enhances insulin-like growth factor-I effects on skeletal muscle cell proliferation. Role of specific intracellular signaling pathways.

IGF-I stimulation of cell proliferation and c-Fos expression in skeletal muscle cells is markedly enhanced by dexamethasone. The effect of dexamethasone is not mediated by changes in IGF-binding proteins, as evidenced by similar effects of dexamethasone on the actions of insulin, PDGF-BB, and the IGF-I analogue long R3IGF-I. Dexamethasone also does not alter autocrine IGF-II secretion by muscle...

متن کامل

The critical role of Shc in insulin-like growth factor-I-mediated mitogenesis and differentiation in 3T3-L1 preadipocytes.

Insulin-like growth factor-I (IGF-I) stimulates mitogenesis in proliferating preadipocytes, but when cells reach confluence and become growth arrested, IGF-I stimulates differentiation into adipocytes. IGF-I induces signaling pathways that involve IGF-I receptor-mediated tyrosine phosphorylation of Shc and insulin receptor substrate 1 (IRS-1). Either of these adaptor proteins can lead to activa...

متن کامل

Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration

Introduction  Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective:  We hypothesi...

متن کامل

Extracellular signal-regulated kinase-1 and -2 respond differently to mitogenic and differentiative signaling pathways in myoblasts.

In this report we show that extracellular signal-regulated kinase-1 and -2 (ERK-1 and -2) respond differently to signals that elicit proliferation and/or differentiation of myoblasts using the C2C12 cell line and nondifferentiating mutant NFB4 cells derived from them. Induction of differentiation by withdrawal of serum rendered ERKs in C2C12 myoblasts relatively insensitive to restimulation by ...

متن کامل

Insulin-like growth factor (IGF)-I regulates IGF-binding protein-5 gene expression through the phosphatidylinositol 3-kinase, protein kinase B/Akt, and p70 S6 kinase signaling pathway.

Expression of the insulin-like growth factor-binding protein 5 (IGFBP-5) gene in vascular smooth muscle cells is up-regulated by IGF-I through an IGF-I receptor-mediated mechanism. In this study, we studied the possible involvement of the mitogen-activated protein kinase (MAPK) and PI 3-kinase signaling pathways in mediating IGF-I-regulated IGFBP-5 gene expression. The addition of Des(1-3)IGF-I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 143 2  شماره 

صفحات  -

تاریخ انتشار 2002